

Rhodium—Hydrido—Benzylamine—Triphenylphosphine Complexes: Solid-State and Solution Structures and Implications in Catalyzed Imine Hydrogenation

Paolo Marcazzan, Brian O. Patrick, and Brian R. James*

Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

Received June 14, 2004

The complexes cis,trans,cis-[Rh(H)₂(PPh₃)₂(NH₂CH₂Ph)₂]PF₆ (1) and cis-[Rh(PPh₃)₂(NH₂CH₂Ph)₂]PF₆ (2) are characterized by X-ray crystallography; the structures are maintained in CH₂Cl₂ where the species are in equilibrium under H₂. In MeOH and in acetone, loss of amine and/or H₂ can occur. Traces of 1 and 2 are present after a Rh-catalyzed H₂-hydrogenation of PhCH=NCH₂Ph in MeOH, where the amine is generated by hydrolysis of the imine substrate through adventitious water. The findings are relevant to catalyst poisoning in the catalytic process.

Introduction

The cis,trans,cis-[Rh(H)₂(PPh₃)₂(MeOH)₂]PF₆ (3) precursor, readily formed from [Rh(COD)(PPh₃)₂]PF₆ and 1 atm H_2 at room temperature (room temperature, ~ 20 °C), catalyzes homogeneously the H₂-hydrogenation of benzylideneamines (PhCH=NR, R = alkyl, aryl) in MeOH at ambient conditions.^{1,2} We have shown recently that, for the imine PhCH=NCH₂Ph, the mixed imine—amine complex cis-[Rh-(PPh₃)₂(PhCH=NCH₂Ph)(PhCH₂NH₂)]PF₆ (4) is the species that reacts with H₂ in the key step of the catalytic cycle; the benzylamine is generated via a Rh-promoted hydrolysis of the imine, the source of the adventitious water possibly being the liquid imine.² At the end of the catalysis, trace amounts of Rh species were detected by ³¹P NMR. These have now been identified as cis,trans,cis-[Rh(H)₂(PPh₃)₂(NH₂CH₂Ph)₂]-PF₆ (1) and cis-[Rh(PPh₃)₂(NH₂CH₂Ph)₂]PF₆ (2); this article describes the characterization of 1 and 2 in the solid state and their solution structures in CH₂Cl₂, MeOH, and acetone. More generally, catalyzed imine hydrogenation is very solvent-dependent¹ and can be subject to catalyst poisoning by amines,² and so, the findings are important in this area that has industrial significance.³

Experimental Section

General. General experimental procedures were carried out, and reagents were obtained, as described recently elsewhere.²

Syntheses. *cis,trans,cis*-[Rh(H)₂(PPh₃)₂(NH₂CH₂Ph)₂]PF₆ (1). A yellow suspension of [Rh(COD)(PPh₃)₂]PF₆ (85 mg, 0.100 mmol) in MeOH (6 mL) was stirred under 1 atm H₂ for 2 h. To the resultant pale yellow solution was added the amine (27 μL, 0.250 mmol) under H₂, and the mixture was stirred for 15 min to afford spontaneous precipitation of a white solid that was collected, washed with hexanes (3 mL) and Et₂O (3 × 3 mL), and dried in vacuo. Yield: 50 mg (51%). Anal. Calcd for C₅₀H₅₀N₂P₃F₆Rh: C, 60.74; H, 5.10; N, 2.83. Found: C, 60.38; H, 4.87; N, 2.78. ³¹P{¹H} NMR (CD₂Cl₂): δ 49.55 (d, J_{RhP} = 116). ¹H NMR (CD₂Cl₂): δ -17.55 (pseudo-q, 2H, Rh(H)₂, J_{RhH} ≈ ² J_{HP} = 14), 2.20 (m, 4H, $-NH_2$), 2.80 (m, 4H, $-CH_2$), 6.20 (d, 4H, $-CH_2$ (ο-C₆H₅), ³ J_{HH} = 5), 6.95 – 7.60 (m, 36H, arom-H). IR (KBr pellet): ν 2050, 2090 (Rh-H, m), 3336 (N-H, m).

cis-[Rh(PPh₃)₂(PhCH₂NH₂)₂]PF₆ (2)·0.5MeOH. To a red solution of [Rh₂(PPh₃)₄][PF₆]₂ (85 mg, 0.110 mmol Rh)⁴ in MeOH (4 mL) under Ar was added the amine (27 μ L, 0.250 mmol), and the resultant yellow solution was stirred for 2 h. The volume was then reduced to ~1 mL to afford precipitation of a yellow solid that was collected, washed with hexanes (3 mL) and Et₂O (3 × 3 mL), and dried in vacuo. Yield: 60 mg (55%). Anal. Calcd for C₅₀H₄₈N₂P₃F₆Rh•(0.5CH₃OH): C, 60.48; H, 4.99; N, 2.79. Found: C, 60.27; H, 4.90; N, 2.80. ³¹P{¹H} NMR (CD₂Cl₂): δ 51.81 (d,

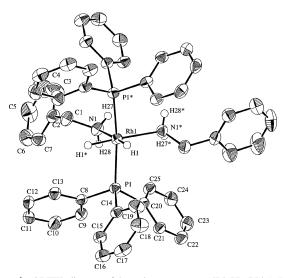
^{*}To whom correspondence should be addressed. E-mail: brj@chem.ubc.ca.

For reviews on imine hydrogenation, see: James, B. R. Catal. Today 1997, 37, 209. Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069. Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.

⁽²⁾ Marcazzan, P.; Abu-Gnim, C.; Seneviratne, K. N.; James, B. R. Inorg. Chem. 2004, 43, 4820. Marcazzan, P.; Patrick, B. O.; James, B. R. Organometallics 2003, 22, 1177.

⁽³⁾ Blaser, H.-U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner, H.; Studer, M. Adv. Synth. Catal. 2003, 345, 103.

⁽⁴⁾ Marcazzan, P.; Ezhova, M. B.; Patrick, B. O.; James, B. R. C. R. Chim. 2002, 5, 373 (J. A. Osborn Memorial Volume).


Table 1. Crystallographic Data for 1 and 2

	1	2
formula	$C_{52}H_{54}N_2F_6P_3Cl_4Rh$	$C_{50.5}H_{50}N_2O_{0.5}F_6P_3Rh$
fw	1158.59	1002.74
cryst color, habit	colorless, chip	red, blocks
cryst size (mm ³)	$0.15 \times 0.15 \times 0.10$	$0.38 \times 0.30 \times 0.25$
space group	C2/c (No. 15)	C2/c (No. 15)
a (Å)	13.7776(9)	29.3124(7)
b (Å)	21.9566(14)	21.0184(5)
c (Å)	19.2997(14)	18.1676(4)
β (deg)	95.948(4)	124.853(2)
$V(\mathring{A}^3)$	5806.9(7)	9185.2(4)
Z	4	8
$\mu \text{ (mm}^{-1}\text{)}$	0.614	0.540
total reflns	27616	40023
unique reflns	6625	9302
$R_{ m int}$	0.071	0.057
no. variables	349	590
R1 $(I > 2\sigma(I))$	0.060 (4488 obsd reflns)	0.042 (7083 obsd reflns)
wR2	0.168 (all data) ^a	$0.120 \text{ (all data)}^b$
GOF	0.96 (all data)	1.03 (all data)

 $^{a}w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0996P)^{2}]$, where $P = (\max(F_{o}^{2}, 0) + 2F_{c}^{2})/3$. $^{b}w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0588P)^{2} + 0.5327P]$, where $P = (\max(F_{o}^{2}, 0) + 2F_{c}^{2})/3$.

 $J_{\rm RhP} = 177$). In CD₃OD: δ 52.21 (d, $J_{\rm RhP} = 176$). ¹H NMR (CD₂-Cl₂): δ 2.50 (br t, 4H, $-{\rm N}H_2$), 3.45 (br t, 4H, $-{\rm C}H_2$), 6.90-7.70 (m, 40H, arom-H).

X-ray Crystallographic Analysis. X-ray quality crystals of 1 and 2, respectively, were grown from CH2Cl2/hexanes and from MeOH solutions of the complexes. Measurements were made at 173(2) K on a Rigaku/ADSC CCD area detector with graphite monochromated Mo Kα radiation (0.71073 Å). Some crystallographic data for 1 and 2 are shown in Table 1. Data were collected and processed using the d*TREK program.5 The final unit-cell parameters for 1 and 2 were based on 14423 (3.7° $< 2\theta < 55.7$ °) and 22397 (5.9° < 2θ < 55.9°) reflections, respectively. The structures were solved by direct methods⁶ and expanded using Fourier techniques.⁷ Compound 1 crystallizes with a CH₂Cl₂ molecule in the asymmetric unit; additional residual electron density peaks were found but could not be modeled as either CH₂Cl₂ or hexane. The SQUEEZE function8 in PLATON9 was used to correct the raw data for the residual density. All non-H-atoms of the cations of 1 and 2 were refined anisotropically. Within 1, the N-H and Rh-H H-atoms were refined isotropically, while other H-atoms were included in fixed positions. Within 2, the associated PF₆ counterion resides on two positions with one-half PF₃ on each; one PF₃ fragment is disordered and was modeled in two orientations. In addition, one-half molecule of MeOH also crystallized in the asymmetric unit of 2. Some atoms in the disordered PF₃ fragment were refined isotropically, while the H-atoms of the MeOH involved in H-bonding were refined isotropically, but all other H-atoms were included in calculated positions. The final cycle of full-matrix leastsquares refinement (function minimized: $\sum w(F_0^2 - F_c^2)^2$) was based on 6625 observed reflections ($I \ge 0.00\sigma(I)$) and 349 variables

Figure 1. ORTEP diagram of the cation cis,trans,cis-[Rh(H)₂(PPh₃)₂(NH₂-CH₂Ph)₂]⁺ (1) with 50% probability thermal ellipsoids.

for **1**, and on 9302 observed reflections ($I > 0.00\sigma(I)$) and 590 variables for **2**. All calculations were performed using the teXsan¹⁰ crystallographic software package and SHELXL-97.¹¹

Results and Discussion

Reaction of a MeOH solution of *cis,trans,cis*-[Rh(H)₂-(PPh₃)₂(MeOH)₂]PF₆ (**3**), generated in situ from [Rh(COD)-(PPh₃)₂]PF₆, ¹² with \sim 2 equiv of PhCH₂NH₂ at room temperature under 1 atm H₂ for 15 min results in the displacement of the MeOH ligands and the formation of *cis,trans,cis*-[Rh-(H)₂(PPh₃)₂(NH₂CH₂Ph)₂]PF₆ (**1**) in \sim 50% isolated yield (Scheme 1).

The structure of the cation is shown in Figure 1, with selected bond lengths and angles given in Table 2. The complex resides on a 2-fold rotation axis, and the geometry at the Rh(III) is close to octahedral. The Rh-P distance within the *trans*-PPh₃ ligands (2.293 Å) and the Rh-H bond length (1.47 Å) are typical of those found in Rh(III) complexes, ^{13,14} while the phosphine ligands are bent towards the hydrides as indicated by the P-Rh-H angles (86.9° and 82.4°) and the P-Rh-P angle (165.6°). The Rh-N distance (2.239 Å) is ~0.2 Å longer than an estimated average Rh^{III}-N bond length, ¹⁵ presumably because the amine is trans to the high trans-influence hydride ligand. ¹⁶ The geometry of the coordinated amine is essentially identical to that in the mixed Rh^I-imine-amine complex such as 4 (see Introduction) but where the phosphine is P(*p*-tolyl)₃ and the

⁽⁵⁾ d*TREK: Area Detector Software, version 7.11; Molecular Structure Corporation: The Woodlands, TX, 2001.

⁽⁶⁾ SIR97: Altomare, A.; Burla, M. C.; Cammalli, G.; Cascarano, M.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, A. J. Appl. Crystallogr. 1999, 32, 115.

<sup>Spagna, A. J. Appl. Crystallogr. 1999, 32, 115.
(7) Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; de Gelder, R.; Israel, R.; Smits, J. M. M. The DIRDIF-94 Program System; Technical Report of the Crystallography Laboratory; University of Nijmegen: Nijmegen, The Netherlands, 1994.</sup>

⁽⁸⁾ SQUEEZE: Sluis, P. v. d.; Spek, A. L. Acta Crystallogr., Sect. A 1990, 46, 194.

⁽⁹⁾ PLATON: Spek, A. L. A Multipurpose Crystallographic Tool; Utrecht University: Utrecht, The Netherlands, 1998.

⁽¹⁰⁾ teXsan: Crystal Structure Analysis Package; Molecular Structure Corporation: The Woodlands, TX, 1985 and 1992.

⁽¹¹⁾ Sheldrick, G. M. SHELXL-97; University of Göttingen: Göttingen, Germany, 1997.

⁽¹²⁾ Shapley, J. R.; Schrock, R. R.; Osborn, J. A. J. Am. Chem. Soc. 1969, 91, 2816. Schrock, R. R.; Osborn, J. A. J. Am. Chem. Soc. 1971, 93, 2397. Haines, L. M.; Singleton, E. J. Chem. Soc., Dalton Trans. 1972, 1891

⁽¹³⁾ Yu, X.-Y; Maekawa, M.; Morita, T.; Chang, H.-C.; Kitagawa, S.; Jin, G.-X. Polyhedron 2002, 21, 1613.

⁽¹⁴⁾ Ezhova, M. B.; Patrick, B. O.; James, B. R.; Ford, M. E.; Waller, F. J. Russ. Chem. Bull. Int. Ed. 2003, 52, 2707 (M. Vol'pin Memorial Volume).

⁽¹⁵⁾ Orpen, A. G.; Brammer, L.; Allen, F. H.; Kennard, O.; Watson, D. J. Chem. Soc., Dalton Trans. 1989, S1.

⁽¹⁶⁾ Kaesz, H. D.; Saillant, R. B. Chem. Rev. 1972, 72, 231.

Scheme 1. Reaction Scheme for the Formation of cis, trans, cis-[Rh(H)₂(PPh₃)₂(NH₂CH₂Ph)₂]PF₆ (1) and cis-[Rh(PPh₃)₂(NH₂CH₂Ph)₂]PF₆ (2)

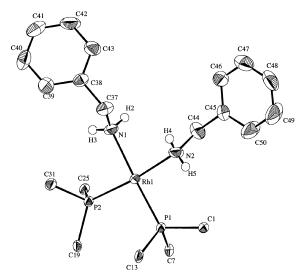
Table 2. Selected Bond Distances and Angles for *cis,trans,cis*-[Rh(H)₂(PPh₃)₂(NH₂CH₂Ph)₂]PF₆ (1) with Estimated Standard Deviations in Parentheses

bond	length (Å)	bond	angle (deg)
Rh(1)-P(1)	2.2927(10)	P(1)-Rh(1)-N(1)	91.76(11)
Rh(1)-N(1)	2.239(3)	N(1)-Rh(1)-N(1*)	94.33(19)
Rh(1) - H(1)	1.47(3)	P(1)-Rh(1)-P(1*)	165.63(5)
N(1)-C(1)	1.489(5)	N(1)-Rh(1)-H(1)	174.5(12)
C(1)-C(2)	1.513(5)	N(1*)-Rh(1)-H(1)	91.1(12)
		P(1)-Rh(1)-H(1)	86.9(13)
		P(1*)-Rh(1)-H(1)	82.4(13)
		P(1)-Rh(1)-N(1*)	98.01(11)
		C(1)-N(1)-Rh(1)	114.7(2)

amine is trans to the phosphine; in this mixed complex, the Rh-N distance is 2.209 Å.² For complex 1, IR bands are seen for ν (Rh-H) and ν (N-H).

The structure of 1 is maintained in CH₂Cl₂ under H₂ (see additional details elsewhere in this paper) as shown by room temperature NMR data: the $^{31}P\{^{1}H\}$ doublet (δ_{P} 49.55, J_{RhP} = 116) is typical for trans-PPh₃ ligands coupled to Rh, ¹² while the high-field ¹H resonance for the equivalent cishydrides ($\delta_{\rm H}$ –17.55, $J_{\rm RhH} \approx {}^2J_{\rm PH} = 14$) appears as a pseudoquartet instead of the expected doublet of triplets. This overlapping of triplets has been seen previously with corresponding dihyride complexes containing unsaturated N-donor ligands. 13,17 The more downfield $\delta_{\rm H}$ shift for the hydrides of 1 versus that of the analogous bis-alcohol complex 3 ($\delta_{\rm H}$ -21.20) is consistent with the relative transinfluence of the ligands (RNH₂ > ROH).¹⁶ The ¹H NMR doublet at δ 6.20 (${}^{3}J_{\rm HH} = 5$) is assigned to the *ortho-H* atoms of the amine benzylic rings, likely involved in a π -arene interaction with one phosphine-Ph group: a similar assignment was made for the imine-amine complex 4, where a ¹H−¹³C HETCOR NMR experiment established that these protons correlate with aromatic C-atoms.²

Complex 1 in CD_2Cl_2 under Ar loses H_2 reversibly to generate cis-[Rh(PPh₃)₂(NH₂CH₂Ph)₂]PF₆ (2) (Scheme 1), a species that was more readily isolated from reaction of 2 equiv of PhCH₂NH₂ with cis-[Rh(PPh₃)₂(MeOH)₂]PF₆, this being generated in situ by dissolution of [Rh₂(PPh₃)₄][PF₆]₂ in MeOH.⁴ The reaction is again simple replacement of MeOH ligands by amines. The structure of the cation of 2 (Figure 2, Table 3) reveals the expected, essentially square-planar geometry at the Rh(I) center. The Rh^I—P distances are within ± 0.05 Å of those found in other Rh(I) complexes containing cis-PPh₃ ligands^{3,4} while the Rh^I—N lengths are


Table 3. Selected Bond Distances and Angles for *cis*-[Rh(PPh₃)₂(NH₂CH₂Ph)₂]PF₆ (**2**) with Estimated Standard Deviations in Parentheses

bond	length (Å)	bond	angle (deg)
Rh(1)-P(1) Rh(1)-P(2) Rh(1)-N(1) Rh(1)-N(2) N(1)-C(37) N(2)-C(44)	2.2063(8) 2.2483(8) 2.202(3) 2.146(3) 1.486(4) 1.475(6)	P(1)-Rh(1)-N(1) P(2)-Rh(1)-N(2) P(1)-Rh(1)-P(2) P(1)-Rh(1)-N(2) P(2)-Rh(1)-N(1) C(37)-N(1)-Rh(1)	178.17(10) 173.47(11) 93.88(3) 92.50(10) 87.70(10) 120.0(2)
11(2) (44)	1.475(0)	C(44)-N(2)-Rh(1) N(1)-Rh(1)-N(2)	120.0(2) 120.0(3) 85.95(14)

0.03–0.09 Å shorter than those in complex 1. The Rh–N–C angles of 2, compared to those of 1, have opened up by \sim 5°, presumably because of less steric constraint.

The structure of **2** is retained in CD_2Cl_2 and in CD_3OD solutions, where a $^{31}P\{^1H\}$ doublet is seen in the room temperature NMR spectra, the J_{RhP} value of ~ 175 Hz being typical for *cis*-PPh₃ ligands coupled to Rh.^{3,12} The corresponding 1H NMR spectra also identify **2** as the only species present in solution.

Complex 1 on dissolution at room temperature in CD₃-OD under Ar undergoes partial (reversible) loss of H₂ to form 2, and a *trans*-Rh(PPh₃)₂ species (δ_P 46.09 d, J_{RhP} = 118 Hz). This is almost certainly the amine—MeOH species cis,trans,cis-[Rh(H)₂(PPh₃)₂(NH₂CH₂Ph)(MeOH)]PF₆ (5), as in the presence of excess amine this species is reconverted to 1. Of note, the high-field hydride resonances for 1 and 5 are not seen in CD₃OD, presumably because of hydride exchange with the solvent (an intermediate with hydrogenbonding between cis-disposed hydride and MeOH ligands

Figure 2. ORTEP diagram of the cation *cis*-[Rh(PPh₃)₂(NH₂CH₂Ph)₂]⁺ (2) with 50% probability thermal ellipsoids.

⁽¹⁷⁾ Albinati, A.; Auklin, C. G.; Gunazzoli, F.; Ruegg, H.; Pregosin, P. S. Inorg. Chem. 1987, 26, 503. Ghedini, M.; Neve, F.; Manotti Lanfredi, A. M.; Ugozzoli, F. Inorg. Chim. Acta 1988, 147, 243. Al-Najjar, I. M.; El-Baih, F. E. M.; Abu-Loha, F. M.; Gomaa, Z. Transition Met. Chem. 1994, 19, 325.

is readily envisioned). Thus, the fact that 1 dissolved in MeOH (the favored solvent for catalyzed imine hydrogenation)^{2,3} exists as a mixture of 1, 2, and 5 certainly shows that benzylamine may compete for (i.e., poison) the Rh catalyst. When PhCH=NCH₂Ph is added (Rh/imine = 1:1) to a CD₃OD solution of 2 stored under Ar, the imine—amine complex 4^2 ($\sim 30\%$ formation), unreacted imine, and 2 are detected. Exposure of this solution to 1 atm H₂ for 5 min results in complete conversion of the imine to the dibenzylamine product and generation of 1. Similarly, if excess imine (10 equiv) is added to 2 (or 1) in CD₃OD under H₂, catalytic hydrogenation occurs via complete formation of 4 as described elsewhere,² although here 1 is the final species remaining in solution. Thus in MeOH, the presence of up to 2 equiv of benzylamine per Rh is innocuous to the catalysis, and indeed 1 equiv is essential for formation of the key imine—amine species. Addition of >2 equiv of PhCH₂NH₂, however, does inhibit the catalysis.²

Addition of 1 equiv of PhCH=NCH₂Ph to a CD₂Cl₂ solution of 2 under Ar again results in partial formation $(\sim 50\%)$ of the mixed species 4. Exposure of this solution to 1 atm H₂, however, results in the hydrogenation of only the imine contained in complex 4, with complete conversion of all the Rh into 1; consistent with this, there is no reaction of 1 with 1 equiv of imine. These observations indicate further that, although 2 (and 1) are themselves a "dead-end" for catalysis, hydrogenation can still occur if the mixed species is formed.

In acetone solution at rt under Ar, 1 and 2 display behavior very different from that in CD₂Cl₂ and CD₃OD: both complexes quantitatively rearrange (via loss of H₂ and/or amine) into a species 6 that is either cis-[Rh(PPh₃)₂(NH₂- CH_2Ph)(acetone)]PF₆ or cis-[Rh(PPh₃)₂{NH₂CH₂(η^2 -C₆H₅)}]-PF₆ (eq 1).¹⁸ Free benzylamine and H₂, displaced from either 1 or 2, were detected in the ¹H NMR spectrum $[\delta(CH_2)]$ 4.55 s, $\delta(H_2)$ 4.15], but attempts to isolate **6** were unsuccessful.

2 (or 1)
$$\frac{\text{acetone}}{-\text{PhCH}_2\text{NH}_2}$$

$$(-\text{H}_2)$$

$$-\text{Ph}_3\text{P} \qquad \text{OCMe}_2 \qquad \text{Ph}_3\text{P} \qquad \text{NH}_2\text{CH}_2\text{Ph} \qquad \text{Or} \qquad \text{Ph}_3\text{P} \qquad \text{NH}_2 \qquad (1)$$

The 8-line AMX pattern seen in the ³¹P{¹H} NMR spectrum reveals inequivalent cis phosphines, each trans to a different ligand, and both protons within each of the CH2 and NH2 groups of the coordinated amine are inequivalent in the ¹H NMR, presumably because of restricted rotation about the Rh-N bond.² An upfield-shifted doublet resonance for 2 protons in the aromatic region (δ 6.23) is similar to that observed for 1 and could be assigned to the o-protons of the benzylamine moiety of the mixed amine/acetone species, in which case the downfield resonance would be assigned to the P-atom trans to acetone, and the upfield resonance to the P-atom trans to the amine. 19 However, in situ 6 in acetone was unreactive toward 1 atm H₂ or 1 equiv of PhCH=NCH₂-Ph, and no catalyzed imine hydrogenation was observed in this solvent. As the bis(amine) and bis(acetone)¹² species readily oxidatively add H₂, nonreactivity of the amine/acetone species toward H₂ would be surprising. Thus, **6** is more likely a bidentate benzylamine adduct containing η^2 -coordination of the phenyl group, in which case the δ 6.23 signal would be assigned to the protons of the η^2 -moiety.

Acetone is clearly a stronger donor ligand than MeOH within these Rh systems and does not allow for ready formation of the mixed imine-amine species that is necessary for the catalytic hydrogenation.² Further, dihydrides are readily formed at 1 atm H₂ by Rh(I)-bis(amine) and Rh(I)—amine(solvent) species in MeOH, but not in acetone. Such marked solvent effects, coupled with the requirement for adventitious water, make optimization of conditions for hydrogenation of PhCH=NCH₂Ph a nontrivial problem. The generality of such findings within other imine substrates remains to be established.

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada for financial support.

Supporting Information Available: X-ray crystallographic data for the structures of 1 and 2 in CIF format. This material is available free of charge at http://pubs.acs.org.

IC049227B

(18) The in situ characterization of species 6 follows. ³¹P{¹H} NMR (acetone- d_6): δ 47.46 (dd, $J_{RhP} = 167$, ${}^2J_{PP} = 49$), 52.44 (dd, $J_{RhP} = 167$) 183, ${}^{2}J_{PP} = 49$). ¹H NMR (acetone- d_{6}): δ 2.90 (d, 1H, ${}^{2}J_{HH} = 12$, $-NH_2$), 3.16 (d, 1H, ${}^2J_{HH} = 12$, $-NH_2$), 4.50 (d, 1H, ${}^2J_{HH} = 12$, $-CH_2$), 4.75 (d, 1H, ${}^2J_{HH} = 12$, $-CH_2$), 6.23 (d, 2H, ${}^3J_{HH} = 8$, $-CH_2$ - $(o-C_6H_5)$ or η^2 -Ph, see text), 7.05–7.65 (m, 33H, arom-H).

(19) Marcazzan, P. Ph.D. Thesis, The University of British Columbia, Vancouver, Canada, 2002. Becalski, A. G.; Cullen, W. R.; Fryzuk, M. D.; James, B. R.; Kang, G.-J.; Rettig, S. J. Inorg. Chem. 1991, 30, 5002.